Skip to Main Content

Publications

Research Published at UMBC

A Density Functional Theory (DFT) Investigation of How Small Molecules and Atmospheric Pollutants Relevant to Art Conservation Adsorb on Kaolinite
J. E. Heimann, R. T. Grimes, Z. Rosenzweig, and J. W. Bennett
Appl. Clay Sci., 2021 (206) 106075
https://www.sciencedirect.com/science/article/pii/S0169131721000995?dgcid=author

Surface Transformations of Lead Oxides and Carbonates Using First-Principles and Thermodynamics Calculations
R. T. Grimes, J. A. Leginze, R. Zochowski, and J. W. Bennett
Inorg. Chem., 2021 (60) 1228-1240
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03398

Exploring the A2BX3 Family for New Functional Materials using Crystallographic Database Mining and First-Principles Calculations
J. W. Bennett, J. Phys. Chem. C., 2020
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03093

Surveying Polar Materials in the Inorganic Crystal Structure Database
to Identify Emerging Polar Structure Types
J. W. Bennett, J. Solid State Chem., 2020 (281) 121045
https://www.sciencedirect.com/science/article/pii/S002245961930550X

We find a diverse set of polar structure types in the ICSD that can be classified by their constituents. Shown here are a few examples that can be classified as oxides, sulfides, and intermetallics.

Research Published at the University of Iowa

Density functional theory and thermodynamics analysis of MAl12 Keggin substitution reactions: Insights into ion incorporation and experimental confirmation
J. L. Bjorklund, M. Shohel, J. W. Bennett, M. E. Carolan, J. A. Smith, E. Holler, T. Z. Forbes and S. E. Mason
J. Chem. Phys.
154, 064303 (2021)
https://aip.scitation.org/doi/10.1063/5.0038962

First-principles and Thermodynamics Comparison of Compositionally-Tuned Delafossites: Cation Release from the (001) Surface of Complex Metal Oxides
J. W. Bennett, D. T. Jones, B. G. Hudson, J. Melendez-Rivera, R. J. Hamers and S. E. Mason
Environ. Sci.: Nano, 2020 (7) 1642-1651
https://doi.org/10.1039/C9EN01304K

DFT and Thermodynamics Calculations of Surface Cation Release in LiCoO2
A. Abbaspour-Tamijani, J. W. Bennett, D. T. Jones, N. Cartagena-Gonzalez, Z. R. Jones, E. D. Laudadio, R. J. Hamers, J. A. Santana and S. E. Mason
Applied Surface Science, 2020 (515) 145865
https://doi.org/10.1016/j.apsusc.2020.145865

Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna
J. T. Buchman, E. A. Bennett, C. Wang, A. Abbaspour-Tamijani, J. W. Bennett, B. G. Hudson, C. M. Green, P. L. Clement, B. Zhi, A. H. Henke, E. D. Laudadio, S. E. Mason, R. J. Hamers, R. D. Klaper and C. L. Haynes
Environ. Sci.: Nano
, 2020 (7) 571-587
https://pubs.rsc.org/en/content/articlelanding/2020/en/c9en01074b

A Systematic Determination of Hubbard U using the GBRV Ultrasoft Pseudopotential Set
J. W. Bennett, B. G. Hudson, I. Metz, D. Liang, S. Spurgeon, Q. Cui and S.E. Mason
Computational Materials Science, 2019 (170) 109137
https://www.sciencedirect.com/science/article/pii/S0927025619304288

Modeling of MAl12 Keggin Heteroatom Reactivity by Anion Adsorption
J. L. Bjorklund, J. W. Bennett, T. Z. Forbes and S. E. Mason
Crystal Growth & Design, 2019 (19) 2820-2829
https://pubs.acs.org/doi/abs/10.1021/acs.cgd.9b00044

We can use DFT to probe the structure of different nanoclusters and create structure/property relationships that can be related to reactivity. This example is for a heteroatom Keggin.

DFT Computed Dielectric Response and THz Spectra of Organic Co-Crystals and Their Constituent Components
J. W. Bennett, M. E. Raglione, S. M. Oburn, L. M. MacGillivray, M. A. Arnold and S. E. Mason
Molecules, 2019 (24) 959
https://www.mdpi.com/1420-3049/24/5/959

Methane Dissociation on alpha-Fe2O3(0001) and Fe3O4(111) Surfaces:
First-Principles Insights into Chemical Looping Combustion
J. W. Bennett, X. Huang, Y. Fang, D. M. Cwiertny, V. H. Grassian and S. E. Mason
J. Phys. Chem. C., 2019 (123) 6450-6463
https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b08675

Dissolution of Compositionally-Tuned Complex Metal Oxides: A First-Principles and Thermodynamics
Study of Cation Removal From the (001) Surface of Mn-rich Lithium Nickel Manganese Cobalt Oxide
J. W. Bennett, D. Jones, R. J. Hamers, and S. E. Mason
Inorg. Chem., 2018 (57) 13300-13311
https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b01855

Impact of Phosphate Adsorption on Complex Lithium Cobalt Oxide Nanoparticle Dispersibility in Aqueous Media
E. D. Laudadio, J. W. Bennett, C. M. Greene, S. E. Mason and R. J. Hamers
Environ. Sci. Technol., 2018 (52) 10186-10195
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02324

The Dissolution of Complex Metal Oxides from First-Principles and Thermodynamics: Cation Removal from the (001) Surface of Li(Ni1/3Mn1/3Co1/3)O2
J. W. Bennett, D. Jones, X. Huang, R. J. Hamers and S. E. Mason
Environ. Sci. Technol., 2018 (52) 5792-5802
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b00054

A potential step-wise mechanism for the surface dissolution of Li-ion battery cathode materials in an aqueous environment. The DFT + solvent ion method is based on changes in Gibbs free energy, so we only need the initial and final DFT total energies.

Analysis of Conformational Properties of Amine Ligands at the Gold/Water Interface with QM, MM,
and QM/MM simulations *Selected as a PCCP HOT Article
D. Liang, J. Hong, D. Fang, J. W. Bennett, S. E. Mason, R. J. Hamers and Q. Cui
Phys. Chem. Chem. Phys., 2018 (20) 3349-3362
https://pubs.rsc.org/en/content/articlehtml/2018/cp/c7cp06709g

A Survey of the Reactivity Relationships of Anionic Adsorbates on Aluminum Nanoclusters
J. W. Bennett, J. L. Bjorklund, T. Z. Forbes and S. E. Mason
Inorg. Chem., 2017 (56) 13014-13028
https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b01803

DFT-computed electrostatic potential maps can help explain differences in nanocluster reactivity. The three shown here are for aluminum oxide nanoclusters.

Research highlights: comparing the biological response of nanoparticle solid solutions
J. W. Bennett, C. Allen, S. Pramanik, M. J. Gallagher, N. V. Hudson-Smith, D. Jones, M. O. P. Krause and S. E. Mason
Environ. Sci.: Nano, 2017 (4) 1428-1432
https://pubs.rsc.org/en/content/articlehtml/2015/en/c7en90025b

Ab initio Atomistic Thermodynamics Study of the (001) Surface of LiCoO2in a Water Environment and
Implications for Reactivity under Ambient Conditions
X. Huang, J.W. Bennett, M. N. Hang, E. D. Laudadio, R. J. Hamers, and S. E. Mason
J. Phys. Chem. C., 2017 (121) 5069-5080
https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b12163

Influence of Nickel Manganese Cobalt Nanoparticle Composition on Toxicity Toward Shewanella
Oneidensis MR-1: Redesigning for Reduced Biological Impact
I. L. Gunsolus, M. N. Hang, N. V. Hudson-Smith, J. Buchman, J. W. Bennett, D. Conroy, S. E. Mason, C. Haynes and R. Hamers
Environ. Sci.: Nano, 2017 (4) 636-646

Systematic Density Functional Theory Study of the Structural and Electronic Properties of Constrained
and Fully Relaxed (001) Surfaces of Alumina and Hematite
K. W. Corum, X. Huang, J. W. Bennett and S. E. Mason
Molec. Simul. 2017 (43) 406-419 (Special Issue on Surface Chemistry)
https://www.tandfonline.com/doi/abs/10.1080/08927022.2017.1285402

Postdoctoral Research Published at Rutgers University

First-Principles Bulk-Layer Model for Dielectric and Piezoelectric Responses in Superlattices
J. Bonini, J. W. Bennett, P. Chandra and K. M. Rabe
Phys. Rev. B., 2019 (99) 104107
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.104107

Antiferroelectric topological insulators in ABC compounds
B. Monserrat, J. W. Bennett, K. M. Rabe, and D. Vanderbilt
Phys. Rev. Lett., 2017 (119) 036802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.036802

Pseudopotentials for high-throughput DFT calculations:
K. F. Garrity, J. W. Bennett, K. M. Rabe and D. Vanderbilt
Comp. Mater. Sci., 2014, (81), 446
https://www.sciencedirect.com/science/article/pii/S0927025613005077

Orthorhombic ABC semiconductors as antiferroelectrics:
J. W. Bennett, K. F. Garrity, K. M. Rabe, D. Vanderbilt
Phys. Rev. Lett., 2013, (110), 017603
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.017603

We can use symmetry to relate (potentially very) different structure types to each other and then use different atomistic substitutions to induce phase changes and very different types of functional properties.

Discovery and design of functional materials: Integration of database searching and first-principles calculations:
J. W. Bennett
Physics Procedia, 2012, (34) 14-23
https://www.sciencedirect.com/science/article/pii/S1875389212013168

Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations:
J. W. Bennett and K.M. Rabe,
J. Solid State Chem., 2012, (195) 21-31
https://www.sciencedirect.com/science/article/pii/S002245961200326X

Hexagonal ABC semiconductors as ferroelectrics:
J. W. Bennett, K. F. Garrity, K. M. Rabe and D. Vanderbilt
Phys. Rev. Lett., 2012, (109) 167602-1-4
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.109.167602

These hexagonal ABC families can be related to each other by a polar BC-layer buckling distortion, the magnitude of which is controlled by the size of the (green) A-site in between the planes.

Half-Heusler semiconductors as piezoelectrics:
A. Roy, J. W. Bennett, K. M. Rabe and D. Vanderbilt
Phys. Rev. Lett. 2012, (109) 037602
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.037602

The half-Heusler semiconductors can be described as a rock salt lattice of A and B-sites in which 1/2 of the middle sites is tetrahedrally coordinated by C-sites. The inclusion of C-sites in the structure breaks inversion symmetry, so these structures are allowed to be piezoelectric.

Graduate Research Published at the University of Pennsylvania

The structural diversity of ABS3 compounds with d0 electronic configuration for the B-cation
J. Brehm, J. W. Bennett, M. R. Schoenberg, I. Grinberg, and A. M. Rappe
J. Chem. Phys., 2014 (140) 224703-1-8
https://aip.scitation.org/doi/abs/10.1063/1.4879659

Density functional theory study of PbTiO3-based oxysulfides
J. A. Brehm, H. Takenaka, C.-W. Lee, I. Grinberg, J.W. Bennett, M. R. Schoenberg, and A. M. Rappe
Phys. Rev. B., 2014 (89) 195202-1-8
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.195202

A first-principles study of band gap engineering via oxygen vacancy doping in ABB’O3 perovskite solid solutions:
T. Qi, M. T. Curnan, S. Kim, J. W. Bennett, I. Grinberg and A. M. Rappe
Phys. Rev. B., 2011, (84), 245206
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245206

Post density functional theory studies of highly polar semiconductor PbTi1-xNixO3-z solutions:
G. Y. Gou, J. W. Bennett, H. Takenaka and A. M. Rappe
Phys. Rev. B., 2011, (83) 205115-1-7
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.205115

Pb-free ferroelectrics investigated with density-functional theory: Sn(Al1/2Nb1/2)O3 perovskites
J. W. Bennett, I. Grinberg, P. K. Davies and A. M. Rappe
Phys. Rev. B., 2011, (83) 144122-1-6
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.144112

Pb-free semiconductor ferroelectrics: A theoretical study of Pd-substituted Ba(Ti1-xCex)O3 solid solutions:
J. W. Bennett, I. Grinberg, P. K. Davies and A. M. Rappe
Phys. Rev. B, 2010, (82) 184106-1-5
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.184106

DFT tends to underestimate band gaps, so a computationally inexpensive way to help fix this is to add Hubbard U terms into a calculation. This plot shows that adding U values to Ti, Ce, and Pd, drastically changes the DFT-calculated band gaps.

The effect of substituting S for O: The sulfide perovskite BaZrS3 :
J. W. Bennett, I. Grinberg and A. M. Rappe
Phys. Rev. B., 2009, (79) 235115-1-6
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.79.235115

DFT can allow us to study the effects of compositional tuning. Here we substitute O for S in a perovskite and show that the band gap decreases, as does the nature of the HOMO and LUMO.

New highly polar semi-conductor ferroelectrics through d8-cation O-vacancy doping of PbTiO3 :
J. W. Bennett, I. Grinberg and A. M. Rappe
J. Amer. Chem. Soc., 2008, (130), 17409-17412
https://pubs.acs.org/doi/abs/10.1021/ja8052249

DFT calculations allow us to visualize specific orbitals. Here we show the HOMO (dz2) and LUMO (dx2-y2) of a Ni dopant in an ABO3 perovskite.

Non-monotonic composition dependence of the dielectric response of Ba1-xCaxZrO3 :
J. W. Bennett, I. Grinberg and A. M. Rappe
Chem. Mater., 2008, (20), 5134-5138
https://pubs.acs.org/doi/abs/10.1021/cm800929e

BaCe1-xPdxO3 : Redox controlled ingress and egress of palladium in a perovskite:
J. Li, U. G. Singh, J. W. Bennett, K. Page, J. Weaver, J. P. Zhang, T. Proffen,
A. M. Rappe, S. L. Scott and R. Seshadri
Chem. Mater., 2007, (19), 1418-1426
https://pubs.acs.org/doi/abs/10.1021/cm062500i

A Pd-doped perovskite catalyst, BaCe1-xPdxO3-z, for CO oxidation:
U. G. Singh, J. Li, J. W. Bennett, A. M. Rappe, R. Seshadri and S. L. Scott
J. Catalysis, 2007, (249), 349-358
https://www.sciencedirect.com/science/article/pii/S0021951707001698

Effect of symmetry-lowering on the dielectric response of BaZrO3 :
J. W. Bennett, I. Grinberg and A.M. Rappe
Phys. Rev. B., 2006, (73), 180102(R)
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.73.180102

Undergraduate Research Published at Drexel University

Using ice-cooled condensers in chemistry laboratory:
S. Solomon, B. Brook, S, Rutkowsky and J. Bennett
J. Chem. Ed., 2003, (80), 299-301
https://pubs.acs.org/doi/abs/10.1021/ed080p299