Publications

Research Published at UMBC

Want to know more? Follow us on Twitter: @BennettLabsUMBC

55. The Formation and Stability of 3D and 2D Materials
Mona Layegh, Peng Yan, Joseph W. Bennett
Progress in Crystal Growth and Characterization of Materials, 2024 (70), 100615
https://doi.org/10.1016/j.pcrysgrow.2023.100615

54. The Effects of Chlorine-Containing Species on Cinnabar: A Density Functional Theory Investigation into the Surface Adsorption Reactivity of Mercury Sulfide
Aria Tauraso, G. Amalthea Trobare, Lillian G. Kidd, Jessica E. Heimann, Zeev Rosenzweig, Joseph W. Bennett*
Surface Science, 2024 (740), 122412
https://doi.org/10.1016/j.susc.2023.122412
*Featured in the Young Investigator Special Issue 2023

53. Chemical Transformations of 2D Kaolinic Clay Mineral Surfaces from Sulfuric Acid Exposure
Chari, Celia; Heimann, Jessica; Rosenzweig, Zeev; Bennett, Joseph W.*; Faber, Katherine
Langmuir, 2023 (39), 6964-6974
https://pubs.acs.org/doi/full/10.1021/acs.langmuir.3c00113

52. Understanding the Effects of Amine and Morpholine Adsorption on Unglazed Earthenware using Density Functional Theory
Jessica E. Heimann, Zeev Rosenzweig, Joseph W. Bennett*
J. Cult. Herit., 2023 (61) 168-176
https://doi.org/10.1016/j.culher.2023.04.002

51. A DFT Combined with Thermodynamics Exploration of Novel 2D Materials Created Using Aqueous Exfoliation
Mona Layegh and Joseph W. Bennett*
J. Phys. Chem. C., 2023 (127) 2314-2325
https://pubs.acs.org/doi/full/10.1021/acs.jpcc.2c08053
*Special issue “Early Career and Emerging Researchers in Physical Chemistry

One route to create new 2D materials could be through the aqueous exfoliation of carefully chosen 3D materials

50. Surface Transformation Thermodynamics of Alkaline Earth Carbonates using First-Principles Calculations
Ryan T. Grimes and Joseph W. Bennett*
Surface Science, 2022 (726) 122165 https://doi.org/10.1016/j.susc.2022.122165
*Selected for the cover of the December 2022 issue of Surface Science

49. Giant and Controllable Photoplasticity and Photoelasticity in Compound Semiconductors
Jiahao Dong, Yifei Li, Yuying Zhou, Alan Schwartzman, Haowei Xu, Bilal Azhar, Joseph Bennett, Ju Li, and R. Jaramillo
Phys. Rev. Lett., 2022, (129), 065501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.065501
*Highlighted in Physics as an Editor’s Spotlight: https://physics.aps.org/articles/v15/s102

48. A Density Functional Theory (DFT) Investigation of Sulfur-Based Adsorbate Interactions on Alumina and Calcite Surfaces
Stanley Ou, Jessica E. Heimann; Joseph W. Bennett*
Clays and Clay Minerals (2022)
https://link.springer.com/article/10.1007/s42860-022-00194-5

47. Density Functional Theory (DFT) as a Non-Destructive Probe in the Field of Art Conservation: Small Molecule Adsorption on Aragonite Surfaces
Heimann, Jessica; Tucker, Jasper; Huff, Layla; Kim, Ye Rin; Ali, Jood; Stroot, M. Kaylor; Welch, Xavier; White, Harley; Wilson, Marcus; Wood, Cecelia; Gates, Glenn; Rosenzweig, Zeev; Bennett, Joseph*
ACS Appl. Mater. Inter., 2022, (14), 13858-13871
https://pubs.acs.org/doi/abs/10.1021/acsami.1c23695

46. Developing New Antiferroelectric and Ferroelectric Oxides and Chalcogenides Within the A2BX3 Family*
A. C. Khan, A. S. Cook, J. A. Leginze, and J. W. Bennett*
J. Mater. Res., 2022, (37), 346-359
https://link.springer.com/article/10.1557/s43578-021-00410-3
*Special Issue Highlighting Early Career Materials Scientists 2022

Developing new families of functional materials requires knowing specific details about the potential energy landscape like the irreps that describe atomistic displacements, the estimated barrier to induce a phase transition, and finally, the type of phase transition.

45. Baltimore SCIART: A Fully Virtual Undergraduate Research Experience at the Interface of Computational Chemistry and Art
J. E. Heimann, T. H. Williams, J. W. Bennett, and Z. Rosenzweig
J. Chem. Ed., 2021, (98) 3172-3179
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00425

44. A Density Functional Theory (DFT) Investigation of How Small Molecules and Atmospheric Pollutants Relevant to Art Conservation Adsorb on Kaolinite
J. E. Heimann, R. T. Grimes, Z. Rosenzweig, and J. W. Bennett*
Appl. Clay Sci., 2021 (206) 106075
https://www.sciencedirect.com/science/article/pii/S0169131721000995?dgcid=author

43. Surface Transformations of Lead Oxides and Carbonates Using First-Principles and Thermodynamics Calculations
R. T. Grimes, J. A. Leginze, R. Zochowski, and J. W. Bennett*
Inorg. Chem., 2021 (60) 1228-1240
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03398

* Featured in the “Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists” Issue of Inorganic Chemistry
Out in Inorganic Chemistry Special Issue

We can use first-principles DFT and known values of Delta G to predict the thermodynamics of surface transformations that lead to Pb release.

42. Exploring the A2BX3 Family for New Functional Materials using Crystallographic Database Mining and First-Principles Calculations
J. W. Bennett*, J. Phys. Chem. C., 2020
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03093

41. Surveying Polar Materials in the Inorganic Crystal Structure Database
to Identify Emerging Polar Structure Types
J. W. Bennett*, J. Solid State Chem., 2020 (281) 121045
https://www.sciencedirect.com/science/article/pii/S002245961930550X

We find a diverse set of polar structure types in the ICSD that can be classified by their constituents. Shown here are a few examples that can be classified as oxides, sulfides, and intermetallics.

Research Published at the University of Iowa

40. Understanding the Mechanism of Secondary Cation Release from the (001) Surface of Li(Ni1/3Mn1/3Co1/3)O2: Insights from First-Principles; Blake G. Hudson, Diamond T. Jones,Victoria M. Rivera Bustillo, Joseph W. Bennett and Sara E. Mason
J. Phys. Chem. C., 127, 43, 21022–21032 (2023)
https://pubs.acs.org/doi/10.1021/acs.jpcc.3c02764

39. Examining the Aufbau Principle and Ionization Energies: A Computational Chemistry Exercise for the Introductory Level
I. K. Metz, J. W. Bennett, and S. E. Mason
J. Chem. Ed., 98, 4017-4025 (2021)
https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.1c00700

38. Density functional theory and thermodynamics analysis of MAl12 Keggin substitution reactions: Insights into ion incorporation and experimental confirmation
J. L. Bjorklund, M. Shohel, J. W. Bennett, M. E. Carolan, J. A. Smith, E. Holler, T. Z. Forbes and S. E. Mason
J. Chem. Phys.,
154, 064303 (2021)
https://aip.scitation.org/doi/10.1063/5.0038962

37. First-principles and Thermodynamics Comparison of Compositionally-Tuned Delafossites: Cation Release from the (001) Surface of Complex Metal Oxides
J. W. Bennett, D. T. Jones, B. G. Hudson, J. Melendez-Rivera, R. J. Hamers and S. E. Mason
Environ. Sci.: Nano, 2020 (7) 1642-1651
https://doi.org/10.1039/C9EN01304K

36. DFT and Thermodynamics Calculations of Surface Cation Release in LiCoO2
A. Abbaspour-Tamijani, J. W. Bennett, D. T. Jones, N. Cartagena-Gonzalez, Z. R. Jones, E. D. Laudadio, R. J. Hamers, J. A. Santana and S. E. Mason
Applied Surface Science, 2020 (515) 145865
https://doi.org/10.1016/j.apsusc.2020.145865

35. Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna
J. T. Buchman, E. A. Bennett, C. Wang, A. Abbaspour-Tamijani, J. W. Bennett, B. G. Hudson, C. M. Green, P. L. Clement, B. Zhi, A. H. Henke, E. D. Laudadio, S. E. Mason, R. J. Hamers, R. D. Klaper and C. L. Haynes
Environ. Sci.: Nano
, 2020 (7) 571-587
https://pubs.rsc.org/en/content/articlelanding/2020/en/c9en01074b

34. A Systematic Determination of Hubbard U using the GBRV Ultrasoft Pseudopotential Set
J. W. Bennett, B. G. Hudson, I. Metz, D. Liang, S. Spurgeon, Q. Cui and S.E. Mason
Computational Materials Science, 2019 (170) 109137
https://www.sciencedirect.com/science/article/pii/S0927025619304288

33. Modeling of MAl12 Keggin Heteroatom Reactivity by Anion Adsorption
J. L. Bjorklund, J. W. Bennett, T. Z. Forbes and S. E. Mason
Crystal Growth & Design, 2019 (19) 2820-2829
https://pubs.acs.org/doi/abs/10.1021/acs.cgd.9b00044

We can use DFT to probe the structure of different nanoclusters and create structure/property relationships that can be related to reactivity. This example is for a heteroatom Keggin.

32. DFT Computed Dielectric Response and THz Spectra of Organic Co-Crystals and Their Constituent Components
J. W. Bennett, M. E. Raglione, S. M. Oburn, L. M. MacGillivray, M. A. Arnold and S. E. Mason
Molecules, 2019 (24) 959
https://www.mdpi.com/1420-3049/24/5/959

31. Methane Dissociation on alpha-Fe2O3(0001) and Fe3O4(111) Surfaces:
First-Principles Insights into Chemical Looping Combustion
J. W. Bennett, X. Huang, Y. Fang, D. M. Cwiertny, V. H. Grassian and S. E. Mason
J. Phys. Chem. C., 2019 (123) 6450-6463
https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b08675

30. Dissolution of Compositionally-Tuned Complex Metal Oxides: A First-Principles and Thermodynamics
Study of Cation Removal From the (001) Surface of Mn-rich Lithium Nickel Manganese Cobalt Oxide
J. W. Bennett, D. Jones, R. J. Hamers, and S. E. Mason
Inorg. Chem., 2018 (57) 13300-13311
https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b01855

29. Impact of Phosphate Adsorption on Complex Lithium Cobalt Oxide Nanoparticle Dispersibility in Aqueous Media
E. D. Laudadio, J. W. Bennett, C. M. Greene, S. E. Mason and R. J. Hamers
Environ. Sci. Technol., 2018 (52) 10186-10195
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02324

28. The Dissolution of Complex Metal Oxides from First-Principles and Thermodynamics: Cation Removal from the (001) Surface of Li(Ni1/3Mn1/3Co1/3)O2
J. W. Bennett, D. Jones, X. Huang, R. J. Hamers and S. E. Mason
Environ. Sci. Technol., 2018 (52) 5792-5802
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b00054

A potential step-wise mechanism for the surface dissolution of Li-ion battery cathode materials in an aqueous environment. The DFT + solvent ion method is based on changes in Gibbs free energy, so we only need the initial and final DFT total energies.

27. Analysis of Conformational Properties of Amine Ligands at the Gold/Water Interface with QM, MM,
and QM/MM simulations *Selected as a PCCP HOT Article
D. Liang, J. Hong, D. Fang, J. W. Bennett, S. E. Mason, R. J. Hamers and Q. Cui
Phys. Chem. Chem. Phys., 2018 (20) 3349-3362
https://pubs.rsc.org/en/content/articlehtml/2018/cp/c7cp06709g

26. A Survey of the Reactivity Relationships of Anionic Adsorbates on Aluminum Nanoclusters
J. W. Bennett, J. L. Bjorklund, T. Z. Forbes and S. E. Mason
Inorg. Chem., 2017 (56) 13014-13028
https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b01803

DFT-computed electrostatic potential maps can help explain differences in nanocluster reactivity. The three shown here are for aluminum oxide nanoclusters.

25. Research highlights: comparing the biological response of nanoparticle solid solutions
J. W. Bennett, C. Allen, S. Pramanik, M. J. Gallagher, N. V. Hudson-Smith, D. Jones, M. O. P. Krause and S. E. Mason
Environ. Sci.: Nano, 2017 (4) 1428-1432
https://pubs.rsc.org/en/content/articlehtml/2015/en/c7en90025b

24. Ab initio Atomistic Thermodynamics Study of the (001) Surface of LiCoO2in a Water Environment and
Implications for Reactivity under Ambient Conditions
X. Huang, J.W. Bennett, M. N. Hang, E. D. Laudadio, R. J. Hamers, and S. E. Mason
J. Phys. Chem. C., 2017 (121) 5069-5080
https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b12163

23. Influence of Nickel Manganese Cobalt Nanoparticle Composition on Toxicity Toward Shewanella
Oneidensis MR-1: Redesigning for Reduced Biological Impact
I. L. Gunsolus, M. N. Hang, N. V. Hudson-Smith, J. Buchman, J. W. Bennett, D. Conroy, S. E. Mason, C. Haynes and R. Hamers
Environ. Sci.: Nano, 2017 (4) 636-646

22. Systematic Density Functional Theory Study of the Structural and Electronic Properties of Constrained
and Fully Relaxed (001) Surfaces of Alumina and Hematite
K. W. Corum, X. Huang, J. W. Bennett and S. E. Mason
Molec. Simul. 2017 (43) 406-419 (Special Issue on Surface Chemistry)
https://www.tandfonline.com/doi/abs/10.1080/08927022.2017.1285402

Postdoctoral Research Published at Rutgers University

21. First-Principles Bulk-Layer Model for Dielectric and Piezoelectric Responses in Superlattices
J. Bonini, J. W. Bennett, P. Chandra and K. M. Rabe
Phys. Rev. B., 2019 (99) 104107
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.104107

20. Antiferroelectric topological insulators in ABC compounds
B. Monserrat, J. W. Bennett, K. M. Rabe, and D. Vanderbilt
Phys. Rev. Lett., 2017 (119) 036802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.036802

19. Pseudopotentials for high-throughput DFT calculations:
K. F. Garrity, J. W. Bennett, K. M. Rabe and D. Vanderbilt
Comp. Mater. Sci., 2014, (81), 446
https://www.sciencedirect.com/science/article/pii/S0927025613005077

18. Orthorhombic ABC semiconductors as antiferroelectrics:
J. W. Bennett, K. F. Garrity, K. M. Rabe, D. Vanderbilt
Phys. Rev. Lett., 2013, (110), 017603
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.017603

We can use symmetry to relate (potentially very) different structure types to each other and then use different atomistic substitutions to induce phase changes and very different types of functional properties.

17. Discovery and design of functional materials: Integration of database searching and first-principles calculations:
J. W. Bennett
Physics Procedia, 2012, (34) 14-23
https://www.sciencedirect.com/science/article/pii/S1875389212013168

16. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations:
J. W. Bennett and K.M. Rabe,
J. Solid State Chem., 2012, (195) 21-31
https://www.sciencedirect.com/science/article/pii/S002245961200326X

15. Hexagonal ABC semiconductors as ferroelectrics:
J. W. Bennett, K. F. Garrity, K. M. Rabe and D. Vanderbilt
Phys. Rev. Lett., 2012, (109) 167602-1-4
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.109.167602

These hexagonal ABC families can be related to each other by a polar BC-layer buckling distortion, the magnitude of which is controlled by the size of the (green) A-site in between the planes.

14. Half-Heusler semiconductors as piezoelectrics:
A. Roy, J. W. Bennett, K. M. Rabe and D. Vanderbilt
Phys. Rev. Lett. 2012, (109) 037602
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.037602

The half-Heusler semiconductors can be described as a rock salt lattice of A and B-sites in which 1/2 of the middle sites is tetrahedrally coordinated by C-sites. The inclusion of C-sites in the structure breaks inversion symmetry, so these structures are allowed to be piezoelectric.

Graduate Research Published at the University of Pennsylvania

13. The structural diversity of ABS3 compounds with d0 electronic configuration for the B-cation
J. Brehm, J. W. Bennett, M. R. Schoenberg, I. Grinberg, and A. M. Rappe
J. Chem. Phys., 2014 (140) 224703-1-8
https://aip.scitation.org/doi/abs/10.1063/1.4879659

12. Density functional theory study of PbTiO3-based oxysulfides
J. A. Brehm, H. Takenaka, C.-W. Lee, I. Grinberg, J.W. Bennett, M. R. Schoenberg, and A. M. Rappe
Phys. Rev. B., 2014 (89) 195202-1-8
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.195202

11. A first-principles study of band gap engineering via oxygen vacancy doping in ABB’O3 perovskite solid solutions:
T. Qi, M. T. Curnan, S. Kim, J. W. Bennett, I. Grinberg and A. M. Rappe
Phys. Rev. B., 2011, (84), 245206
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245206

10. Post density functional theory studies of highly polar semiconductor PbTi1-xNixO3-z solutions:
G. Y. Gou, J. W. Bennett, H. Takenaka and A. M. Rappe
Phys. Rev. B., 2011, (83) 205115-1-7
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.205115

9. Pb-free ferroelectrics investigated with density-functional theory: Sn(Al1/2Nb1/2)O3 perovskites
J. W. Bennett, I. Grinberg, P. K. Davies and A. M. Rappe
Phys. Rev. B., 2011, (83) 144122-1-6
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.144112

8. Pb-free semiconductor ferroelectrics: A theoretical study of Pd-substituted Ba(Ti1-xCex)O3 solid solutions:
J. W. Bennett, I. Grinberg, P. K. Davies and A. M. Rappe
Phys. Rev. B, 2010, (82) 184106-1-5
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.184106

DFT tends to underestimate band gaps, so a computationally inexpensive way to help fix this is to add Hubbard U terms into a calculation. This plot shows that adding U values to Ti, Ce, and Pd, drastically changes the DFT-calculated band gaps.

7. The effect of substituting S for O: The sulfide perovskite BaZrS3 :
J. W. Bennett, I. Grinberg and A. M. Rappe
Phys. Rev. B., 2009, (79) 235115-1-6
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.79.235115

DFT can allow us to study the effects of compositional tuning. Here we substitute O for S in a perovskite and show that the band gap decreases, as does the nature of the HOMO and LUMO.

6. New highly polar semi-conductor ferroelectrics through d8-cation O-vacancy doping of PbTiO3 :
J. W. Bennett, I. Grinberg and A. M. Rappe
J. Amer. Chem. Soc., 2008, (130), 17409-17412
https://pubs.acs.org/doi/abs/10.1021/ja8052249

DFT calculations allow us to visualize specific orbitals. Here we show the HOMO (dz2) and LUMO (dx2-y2) of a Ni dopant in an ABO3 perovskite.

5. Non-monotonic composition dependence of the dielectric response of Ba1-xCaxZrO3 :
J. W. Bennett, I. Grinberg and A. M. Rappe
Chem. Mater., 2008, (20), 5134-5138
https://pubs.acs.org/doi/abs/10.1021/cm800929e

4. BaCe1-xPdxO3 : Redox controlled ingress and egress of palladium in a perovskite:
J. Li, U. G. Singh, J. W. Bennett, K. Page, J. Weaver, J. P. Zhang, T. Proffen,
A. M. Rappe, S. L. Scott and R. Seshadri
Chem. Mater., 2007, (19), 1418-1426
https://pubs.acs.org/doi/abs/10.1021/cm062500i

3. A Pd-doped perovskite catalyst, BaCe1-xPdxO3-z, for CO oxidation:
U. G. Singh, J. Li, J. W. Bennett, A. M. Rappe, R. Seshadri and S. L. Scott
J. Catalysis, 2007, (249), 349-358
https://www.sciencedirect.com/science/article/pii/S0021951707001698

2. Effect of symmetry-lowering on the dielectric response of BaZrO3 :
J. W. Bennett, I. Grinberg and A.M. Rappe
Phys. Rev. B., 2006, (73), 180102(R)
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.73.180102

Undergraduate Research Published at Drexel University

1. Using ice-cooled condensers in chemistry laboratory:
S. Solomon, B. Brook, S, Rutkowsky and J. Bennett
J. Chem. Ed., 2003, (80), 299-301
https://pubs.acs.org/doi/abs/10.1021/ed080p299